Chapter 14: Virtual World
"Business?" Catherine leaned forward, her curiosity piqued. "What kind of business are you planning on starting? Some sort of food product?"
Michael shook his head. "Not a food product, it's technology."
"Technology? What kind?" Catherine inquired further.
"I can't tell you that yet because I don't have the prototype. But don't worry, I'll share it with you once it's working. For now, that's my plan in the future, to build a business and earn a huge lot of money," Michael said, chuckling.
"I see no problem with it," Catherine smiled. "Good luck with your endeavors, Michael."
"Thank you, Catherine. I appreciate your support," Michael responded, genuinely grateful for her encouragement. He felt a sense of determination stirring within him, fueled by the potential of his future plans.
Catherine then glanced at her watch and realized the hour was getting late. "I think we should end our session for today. You've been a great help, Michael. I feel much more confident about the L'H?pital's Rule now."
Michael nodded, gathering his things. "I'm glad to hear that. And remember, if you have any questions or need clarification, just message me."
***
Michael returned to his house. He was alone as his mother was still working. He opened his system interface and tapped the Virtual World Tab.
[Welcome to the Virtual World Tab, where technologies from the future await! To enter the Virtual World, you must have a blueprint that you wish to interact with. Time works differently in the Virtual World. While you are inside, time in reality will stop. This means there will be no changes in the real world when you exit the Virtual World. Please ensure you are in a safe and secure location before entering.]
Adaptive Spectrum Coating Applicator: This machine applies a specially formulated adaptive spectrum resonance coating to the solar panels. The coating dynamically adjusts its properties in response to environmental changes, ensuring optimal light absorption under varying conditions.
Electron Reclamation Matrix Printer: A sophisticated printer that creates the electron reclamation interface. It embeds a network of microscopic conductive pathways into the solar panel, designed to capture and redirect electrons before recombination, thus reducing energy loss.
AI-Integrated Manufacturing System: An AI-driven system that oversees the entire manufacturing process, ensuring ultra-precise assembly and integration of the various high-tech layers and components. It can adapt to real-time feedback and optimize production parameters for the highest quality output.
Environmental Simulation Chamber: Used in the testing phase, this chamber simulates various environmental conditions to test the panels' performance. It can replicate different light intensities, angles, temperatures, and weather conditions to ensure the panels' durability and efficiency in real-world scenarios.
Nano-Scale Quality Assurance Scanner: A highly advanced scanner that inspects the solar panels at the nano-scale. It detects any imperfections or deviations in the quantum dot arrays, nano-photonic waveguides, and other critical components, ensuring that each panel meets stringent quality standards.
Automated Micro-Inverter Assembly Line: Specialized equipment for the assembly and integration of micro-inverters with solar panels. These micro-inverters convert the DC electricity generated by the panels into AC electricity with minimal loss, and their integration is crucial for the panel's overall efficiency.
Hyper-Efficient Cooling System: Used during the manufacturing process to manage the heat generated by the high-precision equipment. This system ensures that the delicate quantum and nano-materials are not damaged by excessive heat during fabrication.
No matter the complicated description, Michael seemed to understand them all. As he approached one, He realized that the mastery levels in physics, computer science, and other core sciences were vital not just for understanding the principles behind these technologies, but also for effectively using and maintaining them.
He wondered if he could bring these technologies out from the real world. And according to the manual, it said yes. However, he can't just get them out and store them in his house. The machines are big and wouldn't obviously fit his house. He needed a space, a factory-sized one. But to get that factory-sized space, he needed money, a resource he didn't have.
There are a lot of ways to get funds from. Like attracting investors and loaning from the banks. But investors are not going to invest in someone like him and definitely, the bank won't loan him money as he is still a college student and doesn't have anything for collateral. It seemed like a catch-22 situation. The very venture that could make him money required substantial capital to start with.
He needed to devise a more realistic plan. One option that crossed his mind was to start small. Maybe he could set up a demonstration project, a single-panel installation, to showcase its effectiveness. This could attract smaller investors or even grants from technology and environmental organizations.
The fastest way is to use the technological system to gamble and possibly join the stock trading game. Michael knew this was risky, but the potential rewards could be significant.
Michael decided to go with the latter. This is a reasonable option as this is lowkey and only needs low capital.
"Okay...gambling and trading it is."