Chapter 298: The Transformer Experiment
The advent of electricity into daily life was nothing short of lightning speed. Just a few days after the grand opening of "The Moulin Rouge," the library at the University of Paris was the first to be illuminated.
The lighting of the university not only meant that the library could now stay open at night, but it also introduced a new challenge for the police – catching cable thieves. Due to the lack of transformer technology, a significant amount of electricity was lost during transmission. To reduce these losses, there were two main solutions. The first was to build power plants in close proximity to the consumers.
Paris, with its abundant Seine River, appeared to be a perfect location for navigation, but it posed challenges for hydroelectric power. Therefore, the only solution for Paris was thermal power. However, this approach came with its own set of problems.
One issue was the source of coal. The coal from the Saar mines had to be transported to Paris, and there were no suitable waterways (cross-basin canals hadn't been developed yet). The only option was to use heavy horse-drawn carts to transport coal to the banks of the Seine River and then onward to Paris, but France's heavy draft horses were already in short supply. Additionally, laying a railway from the Saar mines to the Seine River would also take time.
Considering international trade, it was easier to import coal directly from England, load it onto ships, and transport it along the Seine River to Paris. In terms of transportation costs, it was even more economical than bringing Saar coal. As a result, many power stations along the French coast were using coal from England.
To account for the instability in their relationship with England, Napoleon had established coal depots at various coastal ports to store a portion of coal, thereby enhancing resilience.
Constructing multiple power stations in Paris to meet the city's growing electricity demands had a downside – it would result in severe pollution. If things went awry, Paris might even have to compete with London for the title of "fog capital."
Apart from building power stations nearby, the only other option was to work on the transmission lines. Generally, the larger the cross-section of the cables, the lower the resistance. Even though the power demand at the time wasn't particularly high, the transmission cables were made thick to minimize resistance.
Thick copper cables, combined with the high cost of copper, attracted many potential thieves. As the saying went, "Where there's copper in cables, there's usefulness in theft." Stealing cables became a burgeoning criminal activity, especially for those who refused to work or couldn't find employment. Despite the frequent reports of thieves being electrocuted while stealing cables, this criminal activity persisted. Back when electricity was introduced for agricultural purposes, cables were closely guarded. Whenever outsiders appeared, people became alert, suspecting them of being cable thieves.
In Paris, this issue was particularly pronounced. The electricity supply for the University of Paris originated from power plants that provided electricity to factories in Saint-Antoine, a less affluent area with a history of poor security. Providing power to factories was one thing, but as cables left the power plant's boundaries, crossed a narrow road, and entered the factories, they were vulnerable to theft. Protecting these cables became a daunting task for the police.
"Yes, that's correct. My friend, you shouldn't always expect to wake up one morning and see the wonder complete. Think about it, the Great Pyramid, the Temple of a Thousand Gods – which wonder didn't require time?" Joseph remarked.
"I actually think 'The Moulin Rouge' is already quite a wonder," Lucien chimed in, "and it's a wonder that keeps bringing us endless profit. It adds both smiles and gold coins – it's truly perfect..."
At the same time, in the south, construction of the new experimental transmission line was in progress. Workers erected tall electricity poles at intervals, hanging a string of ceramic bowls-like objects on top. These poles were all set up, and now, under the guidance of engineering technicians, the new wires were being hung on the poles.
Compared to the commonly used thick cables, these wires were much thinner, not even much thicker than a thumb. What made them even more peculiar was that they were entirely bare, without an insulating layer.
Unlike typical cables, these wires couldn't be mounted directly on the poles but had to be hung beneath the string of "ceramic bowls." On each pole, there was a string of "bowls" on both sides, with a bare wire suspended beneath them.
This wire extended all the way into a peculiar machine nearby, where it split into two thicker cables with insulating coatings. In this era, plastic had not yet been invented, so the insulating coating of the wires was usually a composite structure. The innermost layer, in direct contact with the metal, was asbestos. In later times, asbestos was banned in many countries due to its strong carcinogenic properties, but during this period, no one paid much attention to these matters.
Outside the asbestos layer, there was a thick layer of oiled paper, and the outermost layer was made of asphalt.
The responsibility for the experimental task in this area was entrusted to Joseph's student, André-Marie Ampère. At this moment, he was making final preparations for the experiment.
He checked the condition of the transformer: the iron core, coils, and the cooling oil they were immersed in were all in good shape. He carefully inspected other equipment and then said to the people around him, "Well, it's time to start the experiment."